The computer program memory is organized into the following:
Data Segment (Data + BSS + Heap)
Stack
Code segment
Data
The data area contains global and static variables used by the program that are explicitly initialized with a value. This segment can be further classified into a read-only area and read-write area. For instance, the string defined by char s[] = "hello world" in C and a C statement like int debug=1 outside the "main" would be stored in initialized read-write area. And a C statement likeconst char* string = "hello world" makes the string literal "hello world" to be stored in initialized read-only area and the character pointer variable string in initialized read-write area. Ex: static int i = 10 will be stored in the data segment and global int i = 10 will be stored in the data segment.
BSS
The BSS segment, also known as uninitialized data, starts at the end of the data segment and contains all global variables and static variables that are initialized to zero or do not have explicit initialization in source code. For instance a variable declared static int i; would be contained in the BSS segment.
Heap
The heap area begins at the end of the BSS segment and grows to larger addresses from there. The heap area is managed by malloc, realloc, and free, which may use the brk and sbrk system calls to adjust its size (note that the use of brk/sbrk and a single "heap area" is not required to fulfill the contract of malloc/realloc/free; they may also be implemented using mmap to reserve potentially non-contiguous regions of virtual memory into the process' virtual address space). The heap area is shared by all shared libraries and dynamically loaded modules in a process.
Stack
The stack area traditionally adjoined the heap area and grew the opposite direction; when the stack pointer met the heap pointer, free memory was exhausted. (With modern large address spaces and virtual memory techniques they may be placed almost anywhere, but they still typically grow in opposite directions.)
The stack area contains the program stack, a LIFO structure, typically located in the higher parts of memory. On the standard PC x86 computer architecture it grows toward address zero; on some other architectures it grows the opposite direction. A "stack pointer" register tracks the top of the stack; it is adjusted each time a value is "pushed" onto the stack. The set of values pushed for one function call is termed a "stack frame"; A stack frame consists at minimum of a return address.